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Neutrons scattered through small angles by heavy nuclei are polarized by the interaction between the mag
netic moment of the neutron and the electric field of the nucleus. Of the several approximate methods that 
have been used to estimate the magnitude of this effect, none are sufficiently general to permit the simultane
ous consideration of a realistic nuclear potential that includes a spin-orbit interaction. Therefore such esti
mates are valid only for small angles of scatter ( < 5 —10°). A more nearly exact calculation based on an 
optical-model potential that includes a spin-orbit term is described in this paper. The calculation is based on a 
generalization of the usual Born approximation. This "generalized" method can be applied to a variety of 
problems in which the scattering potential is separable into a strong short-range term and a relatively weak 
long-range one. The results of this calculation are compared with data that originally indicated the possi
bility of an extranuclear contribution to the polarization of ^1.0-MeV neutrons scattered through an angle 
of 24°. This comparison indicates that the electromagnetic interaction can account for a substantial part of 
the polarization observed at this "large" angle—even for neutrons scattered from nuclei with moderate 
charge (Z>40). 

I. INTRODUCTION 

THE polarization of neutrons scattered from nuclei 
through "large'' angles can be explained by the 

inclusion of an effective spin-orbit interaction in an 
optical-model potential. On the other hand, Schwinger1 

has shown that the polarization of neutrons scattered 
through small angles (<5-10°) is caused principally 
by the interaction that arises from the motion of the 
neutron magnetic moment in the nuclear Coulomb field. 

To date this interaction has been considered mainly 
as a possible mechanism for the production of polarized 
neutrons. Consequently, Schwinger, in his original 
calculation of the polarization that results from this 
electromagnetic interaction, as well as Sample2 and 
Baz,8 in subsequent calculations, are concerned only 
with small angles of scattering. However, recent meas
urements4 of ^ 1.0-MeV neutrons scattered from several 
nuclei with charge numbers in the neighborhood of 
Z=40 indicate that this interaction may contribute to 
the polarization at a scattering angle of 24°. In these 
measurements the corresponding differential scattering 
cross sections did not exhibit any anomalous behavior 
at 24° nor did the polarizations observed at the other 
angles (56°, 86°, 118°, and 150°). When we attempted 
to investigate the possibility that the interaction 
between the magnetic moment of the neutron and the 
Coulomb field of the nucleus is responsible for the 
abnormal polarization observed at 24°, we found that 
none of the approximate methods1-3 used previously to 
estimate the magnitude of this effect could be extended 
meaningfully to scattering angles greater than 5-10°. 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 Julian Schwinger, Phys. Rev. 73, 407 (1948). 
2 J. T. Sample, Can. J. Phys. 34, 36 (1956). 
3 A. I. Baz, Zh. Eksperim. i Teor. Fiz., 31, 831 (1956) [English 

transl.: Soviet Phys.--JETP 4, 704 (1957)]. 
4 A. J. Elwyn, R. O. Lane, A. Langsdorf, Jr., and J. E. Monahan, 

Phys. Rev. 133, B80 (1964). 

For larger scattering angles it is necessary to consider 
simultaneously the polarization that arises from 
specifically nuclear forces. The details and results of 
such a calculation are presented in this paper. 

The present calculation is based on a generalization 
of the usual Born approximation. This "generalized" 
approximation is applicable to any scattering problem 
in which the interaction potential can be separated 
into a short-range plus a relatively weak long-range 
term. This approximation is described in Sec. II. In 
Sec. I l l the method is used to calculate the polarization 
of neutrons scattered from an optical-model potential 
(that may include a spin-orbit term) plus the potential 
that describes the interaction between the magnetic 
moment of the neutron and the Coulomb field of the 
target nucleus. In Sec. IV the results of this calculation 
are compared with the polarization data of Ref. 4. This 
comparison shows that the electromagnetic interaction 
can account for a substantial part of the polarization 
observed at angles as "large" as 24°—even for neutrons 
scattered from nuclei with moderate charge. 

II. THE BORN APPROXIMATION 

We consider the scattering of neutrons from a 
spherically symmetric potential V(r) that can be 
written in the form 

where 

and 

V(r) = Vt(r) + Vi(r), 

7,0) = 0 f o r r^rc, 

V2(r) = 0 for r<rc. 

(la) 

(lb) 

(lc) 

Both Vi(r) and F2W may contain a spin-orbit term. 
It is assumed that the "cutoff" radius rc in Eqs. (1) 
can be chosen such that V2(r) can be treated as a 
perturbation. 

The usual generalization of the Born approximation 
consists in the following. The scattering problem is 
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solved exactly for some neighboring potential V'(r) and 
the difference AV(r), where 

AV(r) = V(r)-V'(r), (2) 

is treated as a perturbation. To evaluate the integrals 
in the resulting Born expansion for the perturbed wave 
function, it is necessary that the unperturbed wave 
function be known at all points in space. In practice 
this usually means that a potential V'(r) is chosen such 
that the corresponding stationary-state wave function 
can be expressed in terms of elementary functions. 
This procedure seldom leads to a potential AV(r) that 
can be treated as a perturbation. 

In the method described below this difficulty can 
be avoided provided that the values of the phase shifts 
for scattering from the potential V\(r) are known. In 
the general case, these phase shifts can be evaluated 
only by a numerical integration of the wave equation 
with potential Vi(r) so that the question naturally 
arises: "Why not solve the entire problem numeri
cally ?" For the type of problem we have in mind, the 
magnitude of the radius rc in Eqs. (lb) and (lc) is of 
the order of the range of nuclear forces whereas the 
potential F2W extends to distances of the order of the 
radius of electronic orbits. In this case the usual partial-
wave expansion, which for short-range potentials is 
ideally suited to numerical techniques, is much less 
appropriate. The inclusion of a potential Vn(r) that 
extends to atomic dimensions has the effect that the 
interval over which the radial equation for each partial 
wave must be integrated is increased by several orders 
of magnitude. Furthermore, the number of partial 
waves that contribute significantly to the scattering is 
greatly increased. Under these conditions, rather elabo
rate provisions to avoid round-off errors in a numerical 
calculation are often necessary. Thus a numerical 
solution of the entire problem may be considerably 
more difficult than the numerical solution for the 
short-range potential Vi(r) alone. 

We now consider a Born expansion that is con
siderably better suited to scattering problems of the 
type described above. Let \f/ij(r) denote the /, jth. radial 
function in a partial-wave expansion of the solution of 
the Schrodinger equation with a potential V(r) as 
defined in Eqs. (1). This function satisfies the integral 
equation 

^u W = ji(kr) — ik I dx x2Uij(x)\pij(x) 

Xjiikx^hi^ikx^, (3) 
where 

hiM(kr) = ji(kr)+ini(kr). (4) 

Here j \ and tii are the usual spherical Bessel and 
Neumann functions, respectively; Z7y is the potential 
that results from the operation of 2mV/fi2 on the spin 
and angular part of the I, jth wave function; k2~2niE/ 
fi2, where E is the center-of-mass energy of the incident 
neutrons; %< is the lesser of % and r; and x> is the 

greater of x and r. If the value of rf/ij at the radius r—rc 

is expressed as 

faj(rc)=Aij(rc)ji(krc)+Bij(rc)ni(krc), (5) 

the integral equation (3) can be written in the form 

fij(r) = ji(kr)\ Ai,ire) 

— kj dxx2Uij(x)ni(kx)\f/ij(x) \+ni(kr) 

X\Bij (rc)+k dxx2 Uij (x)ji (fta# # (x) . (6) 

Substitution of the approximation 

ypij(r)~Aij(rc)ji(kr)+BiJ(rc)ni(kr), r^rc, (7) 

for ^y(r) in the integrands on the right-hand side of 
Eq. (6) gives the first term of the solution of Eq. (3) 
expressed as a series in powers of the interaction Uij(r) 
in the region r^rc. From Eqs. (lb) and (lc) it follows 
that this is a series in powers of the strength of the 
interaction V^r). 

In a scattering problem it is the asymptotic behavior 
of the partial wave \f/ij(r) that is of interest. To first 
order this is given as 

*l'ij(r)~ji(kr){(l--biJ
:)AiJ(rc)--ciJBiJ(rc)} 

+nl(kr){aljAlj(rc)+(l+biJ)Blj(rc)}, (8) 
where 

r 
aij = k I dxx2Uij(x)[71 (kx)]2. (9) 

J re 

The coefficients bij and cij are defined by replacing 
[jz]2 in Eq. (9) with \_jtn{] and [^z]2, respectively. The 
corresponding first-order phase shifts dij are obtained 
from Eq. (8) as 

(1+bij) tanfy—ay 
tan5y= , (10) 

1 — bij+cij tanfy 
where 

tan£w= -Bij(re)/Aii(re). (11) 
The phase shifts £y describe the scattering from the 
short-range potential Vi(r). We assume that the values 
of these phase shifts have been obtained—if necessary, 
by a numerical integration of the Schrodinger equation 
with interaction potential V\(r). I t is worth noting that , 
since the coefficients ay, bij, and cy in Eq. (10) depend 
only on the interaction F2(r)> the phase shifts £y con
tain all the information about the scattering from Vi(r) 
that is necessary to the solution of the present problem. 
This is true also for all higher order approximations 
obtained by iteration of Eq. (6). 

Frequently the long-range potential F2(r) has a 
simple radial dependence. For the special case 

7 2 ( r ) « J 7 v ( r ) « r - w , n^3, (12) 
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FIG. 1. A comparison of various calculations of the polarization 
of 1.0-MeV neutrons scattered from Pb as a function of the 
scattering angle. The respective strengths of the real and imagi
nary parts of the potential Vm associated with each calculation are 
denoted by V and W. The parameters for the equivalent local 
potential were obtained by the method discussed in Ref. 4. The 
Schwinger and Baz calculations are described in Refs. 1 and 3, 
respectively. For the hard-sphere calculation, Eq. (10) was used 
with rt equal to the nuclear radius (8 F) and with the %ij equal 
to the phase shifts for scattering from an impenetrable sphere of 
this radius. 

the coefficients #y, 6y, and cij for / ^ 1 can be evaluated 
by use of the relation5 

(21-1+») / dx x2~nfi(x)gi(x) 

= (21+ 1-n) dx x2~nfi-.! (*)g j - i (%) 
J re 

+rrnUi(rc)gi(rc)+fi-i(rc)gi-,(rc)'], (13) 

where fi and gi are spherical Bessel functions, either 
ji or ?ii. 

Since the phase shifts £y correspond to a potential 
of limited range, they become vanishingly small for 
sufficiently large values of /. Also, since bi^l for large 
/, there exists an h such that for l^U the 8ij [Eq. (10)] 
approach the ordinary Born-approximation phase 
shifts dif, where 

tan$*/= — ay. (14) 

This result is of considerable practical value since it 
permits the use of the plane-wave Born approximation 
for the scattering amplitude as a device for summing 
the partial-wave series for large values of I. An example 
of the use of this device may be found in Ref. 2. 

The fact that the phase shifts 8ij must be independent 
of the value of the "cutoff" radius rc provides a partial 
test of the accuracy of the approximation (10). For 
example, the values of the polarization calculated at 
any given angle by use of Eq. (10) (as discussed in 
Sec. I l l and IV) differ by less than two parts in 104 

when rc is changed from 15 to 25 F. 
In the limit rc=0, Eq. (1) becomes 

V(r) = V2(r) r^rc=0, (15) 

6 G. N. Watson, Theory of Bessel Functions (Cambridge Uni
versity Press, London, 1944), 2nd ed., p. 136. 

and the entire potential energy of interaction is re
garded as a perturbation. In this limit, Eq. (10) 
reduces to 

t a n 5 y = —aij/(l—bij). (16) 

A Born approximation identical to Eq. (16) has been 
obtained by Brysk.6 I t has been shown by Falk7 that 
this result is also obtained from the first-order Fredholm 
determinantal solution of the integral equation (3). 

III. THE POLARIZATION CALCULATION 

We now consider a calculation of the polarization of 
neutrons scattered from an optical-model potential 
Vm(r), which may include a spin-orbit term, plus a 
potential Ve(r) that describes the interaction between 
the magnetic moment of the neutron and the electric 
field of a charge Ze distributed uniformly over a sphere 
of radius rs. The electromagnetic potential has the form 

7#(r) = [Z^ | / *» | / (2 f^c* ) ]« ( r ) l - a , (17a) 

where fin is the neutron magnetic moment (—1.9135 
nuclear magnetons) and 

<j>(r) = rs~
z for r^rs, 

= r-3 for r^rs. (17b) 

The present calculations are found to be insensitive to 
the value of the radius rs of the nuclear charge dis
tribution. The "cutoff" radius rc is chosen sufficiently 
large that Vm(r) is negligibly small for r^rc. The 
potentials Vi(r) and V%(r) in Eqs. (1) then become 

Vxir^Votf + V.ir) for r<rc, (18a) 
and 

V2(r) = Ve(r) for r^rc>rs. (18b) 

By definition Vi(r) vanishes for r^rc and V$(r) 
vanishes for r<rc. 

In the calculations reported here, the phase shifts £y 
for scattering from the potential Vi(r) were evaluated 
by use of the ABACUS—2 program8 modified to include 
the potential Ve(r) in addition to the optical-model 
potential Vm(r). The phase shifts dy for scattering from 
the potential Vi(r)-\-V2(r) were then calculated by 
use of Eq. (10). Since V2(r) has the radial dependence 
given by Eq. (12) with n=3, the coefficients ay, bijy 

and cij in Eq. (10) can be evaluated by use of Eq. (13). 
For scattering angles much less than 1° the electron 
screening of the nuclear Coulomb field must be taken 
into account. This screening can be approximated by 
requiring finite values for the upper limit of the integrals 
that define these coefficients [Eq. (9)]. The necessary 
modification of Eq. (11) for this case can be obtained 
from Ref. 5. 

«H. Brysk, Phys. Rev. 126, 1589 (1962); 133, B1625 (1964). 
7 D . S. Falk, Phys. Rev. 129, 2340 (1963). 
8 E . H. Auerbach, Brookhaven National Laboratory Report 

BNL-6562, 1962 (unpublished). 
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Once the values of the phase shifts dy have been 
obtained, the polarization is calculated by means of 
the usual partial-wave series in terms of the associated 
Legendre polynomials Pi1. We have used the relations 
given by Sample2 to sum this series for large values of I. 

Several calculations of the polarization of 1.0-MeV 
neutrons scattered from Pb through small angles are 
compared in Fig. 1. The open circles represent values 
calculated by use of Eq. (10) for an optical-model 
potential 

Vm(r) = - (Vo+iW0){l+expECr-roVa]}-1, (19) 

where V0+iW0= (40.0+0.4*) MeV, r 0=8 F, and 
a=0.5 F. These points should be compared with the 
polarizations calculated by Baz3 (solid triangles) for 
the same optical-model potential. These calculations 
differ only in that Baz's results are based on the usual 
generalization of the Born approximation discussed at 
the beginning of Sec. II. Baz takes the neighboring 
potential V'(r)[Eq. (2)] to be a square well. No nuclear 
spin-orbit interaction is included in any of the calcu
lations shown in Fig. 1. 

The dependence of the calculated polarization on the 
parameters chosen for the optical-model potential has 
been investigated (at least in a preliminary way). We 
consider the case of 1.0-MeV neutrons scattered from 
Pb and assume the optical potential to be of the Saxon-
Woods form. For a surface absorption of strength 
Wo=3.2 MeV the polarization at angles less than 10° 
is increased by about 10% over values obtained for the 
volume absorption, Eq. (19), with Wo=QA MeV. An 
increase in the strength of the surface absorption (to 
10 MeV) causes a further increase (by about 10%) in 
the polarization. The shape of the polarization curve 
as a function of scattering angle is not changed ma
terially by these variations in the imaginary part of 
the optical-model potential. In fact, the angular de
pendence of the polarization seems to depend sensitively 
only on the value of /*o in Eq. (19). An increase in the 
value of ro shifts the peak value of the polarization to 
smaller angles and also narrows the peak. For angles 
less than 10° the polarization is not sensitive to a 
variation of Vo. 

IV. COMPARISON WITH POLARIZATION DATA 

Figure 2 compares the results of the present calcu
lation with the data of Elwyn et al* In that work the 
magnitudes of the polarizations measured for 0.3- to 
0.9-MeV neutrons scattered from Zr, Nb, Mo, and Cd 
through a laboratory angle of 24° were observed to be 
systematically larger than could be understood in terms 
of an optical-model potential alone, even after some 
parameter variation was attempted. The dashed curves 
in Fig. 2 represent calculations based on a potential 
equivalent to the nonlocal potential of Perey and Buck9 

9 F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962). 
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FIG. 2. A comparison of measured and calculated polarizations 
of neutrons scattered from four nuclei at three scattering angles 
as a function of neutron energy. The dashed curves represent 
optical-model calculations for a potential equivalent to the non
local potential of Perey and Buck plus a spin-orbit term of strength 
predicted by the shell model. The solid curve (at 24°) includes, in 
addition, the electromagnetic interaction Ve(r). This latter inter
action has a negligible effect on the polarization at the larger 
angles. 

plus a spin-orbit potential of strength predicted by the 
shell model. The radial dependence assumed for the 
equivalent local potential is 

Vm(r) = -VLf.(r)-iWLfD(r) 
+ V.(h/Mrf)*U'l(l/r)(d/dr)Mr), (20a) 

where 
Mr) = [l+exp{ (r-R)/a.)T-i, (20b) 

and 

/i>(r) = 4 e x ] / — ) A l + e x p f - Yj . (20c) 

The values of the equivalent local parameters are given 
as a function of neutron energy in Table I of Ref. 4. 

The polarizations calculated by use of the optical-
model potential alone (the dashed curves in Fig. 2) are 
in quite good agreement with the values measured at 
86 and 118° (as well as with the polarizations measured4 

at other angles), but the polarizations observed at 24° 
are consistently more negative than the calculated 
values. The solid curve in Fig. 2 represents a calculation 
in which the electromagnetic potential Ve(r) is included 
in the total interaction. This calculation is based on 
Eq. (10). The total interaction potential is that defined 
by Eqs. (18), (17), and (20). In this latter calculation 
the agreement with measured values is systematically 
improved, and, as shown, the electromagnetic inter
action accounts for a substantial part of the polari
zations measured at 24°. 

The interaction that results from the electric polari-
zability of the neutron can be included without difficulty 
in the approximation (10). This interaction gives an 
additional contribution to the differential cross section 
at small scattering angles. Calculations including this 
interaction are in progress. 


